Distributed link scheduling in wireless networks

Author:

Bermond Jean-Claude1,Mazauric Dorian1,Misra Vishal2,Nain Philippe3

Affiliation:

1. Université Côte d’Azur-CNRS-Inria-I3S, 2004 Route des Lucioles, B.P. 93, F-06902, Sophia Antipolis, France

2. Department Computer Science, Columbia University, New York, NY, USA

3. Inria, ENS de Lyon/LIP, 46 avenue d’Italie, Lyon 69364, France

Abstract

This work investigates distributed transmission scheduling in wireless networks. Due to interference constraints, “neighboring links” cannot be simultaneously activated, otherwise transmissions will fail. Here, we consider any binary model of interference. We use the model described by Bui et al. in [L. X. Bui, S. Sanghavi and R. Srikant, Distributed link scheduling with constant overhead, IEEE/ACM Trans. Netw. 17(5) (2009) 1467–1480; S. Sanghavi, L. Bui and R. Srikant, Distributed link scheduling with constant overhead, in Proc. ACM Sigmetrics (San Diego, CA, USA, 2007), pp. 313–324.]. We assume that time is slotted and during each slot there are two phases: one control phase in which a link scheduling algorithm determines a set of non-interfering links to be activated, and a data phase in which data is sent through these links. We assume random arrivals on each link during each slot, so that a queue is associated to each link. Since nodes do not have a global knowledge of the queues sizes, our aim (like in [L. X. Bui, S. Sanghavi and R. Srikant, Distributed link scheduling with constant overhead, IEEE/ACM Trans. Netw. 17(5) (2009) 1467–1480; S. Sanghavi, L. Bui and R. Srikant, Distributed link scheduling with constant overhead, in Proc. ACM Sigmetrics (San Diego, CA, USA, 2007), pp. 313–324.]) is to design a distributed link scheduling algorithm. To be efficient, the control phase should be as short as possible; this is done by exchanging control messages during a constant number of mini-slots (constant overhead). In this paper, we design the first fully distributed local algorithm with the following properties: it works for any arbitrary binary interference model; it has a constant overhead (independent of the size of the network and the values of the queues), and it does not require any knowledge of the queue-lengths. We prove that this algorithm gives a maximal set of active links, where for any non-active link there exists at least one active link in its interference set. We also establish sufficient conditions for stability under general Markovian assumptions. Finally, the performance of our algorithm (throughput, stability) is investigated and compared via simulations to that of previously proposed schemes.

Funder

ANR program Investments for the Future

Publisher

World Scientific Pub Co Pte Lt

Subject

Discrete Mathematics and Combinatorics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3