A characterization of some graphs with metric dimension two

Author:

Behtoei Ali1,Davoodi Akbar2,Jannesari Mohsen3,Omoomi Behnaz2

Affiliation:

1. Department of Mathematics, Imam Khomeini International University, 34149-16818, Qazvin, Iran

2. Department of Mathematical Sciences, Isfahan University of Technology, 84156-83111, Isfahan, Iran

3. University of Shahreza, 86149-56841, Shahreza, Iran

Abstract

A set [Formula: see text] is called a resolving set, if for each pair of distinct vertices [Formula: see text] there exists [Formula: see text] such that [Formula: see text], where [Formula: see text] is the distance between vertices [Formula: see text] and [Formula: see text]. The cardinality of a minimum resolving set for [Formula: see text] is called the metric dimension of [Formula: see text] and is denoted by [Formula: see text]. A [Formula: see text]-tree is a chordal graph all of whose maximal cliques are the same size [Formula: see text] and all of whose minimal clique separators are also all the same size [Formula: see text]. A [Formula: see text]-path is a [Formula: see text]-tree with maximum degree [Formula: see text], where for each integer [Formula: see text], [Formula: see text], there exists a unique pair of vertices, [Formula: see text] and [Formula: see text], such that [Formula: see text]. In this paper, we prove that if [Formula: see text] is a [Formula: see text]-path, then [Formula: see text]. Moreover, we provide a characterization of all [Formula: see text]-trees with metric dimension two.

Publisher

World Scientific Pub Co Pte Lt

Subject

Discrete Mathematics and Combinatorics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault-tolerant basis of generalized fat trees and perfect binary tree derived architectures;The Journal of Supercomputing;2024-04-06

2. Edge metric dimension and mixed metric dimension of a plane graph Tn;Discrete Mathematics, Algorithms and Applications;2023-05-31

3. Further Contributions on the Outer Multiset Dimension of Graphs;Results in Mathematics;2022-12-31

4. Computing vertex resolvability of some regular planar graphs;Discrete Mathematics, Algorithms and Applications;2022-04-18

5. Metric Dimension of Maximal Outerplanar Graphs;Bulletin of the Malaysian Mathematical Sciences Society;2021-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3