Affiliation:
1. Department of Computer Science, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA
2. Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
3. Guangdong Key Lab of AI and Multi-Modal Data Processing, BNU-HKBU United International College, Zhuhai 519087, P. R. China
Abstract
The online social platforms, like Twitter, Facebook, LinkedIn and WeChat, have grown really fast in last decade and have been one of the most effective platforms for people to communicate and share information with each other. Due to the word-of-mouth effects, information usually can spread rapidly on these social media platforms. Therefore, it is important to study the mechanisms driving the information diffusion and quantify the consequence of information spread. A lot of efforts have been focused on this problem to help us better understand and achieve higher performance in viral marketing and advertising. On the other hand, the development of neural networks has blossomed in the last few years, leading to a large number of graph representation learning (GRL) models. Compared with traditional models, GRL methods are often shown to be more effective. In this paper, we present a comprehensive review for recent works leveraging GRL methods for popularity prediction problem, and categorize related literatures into two big classes, according to their mainly used model and techniques: embedding-based methods and deep learning methods. Deep learning method is further classified into convolutional neural networks, graph convolutional networks, graph attention networks, graph neural networks, recurrent neural networks, and reinforcement learning. We compare the performance of these different models and discuss their strengths and limitations. Finally, we outline the challenges and future chances for popularity prediction problem.
Funder
Directorate for Computer and Information Science and Engineering
BNU at Zhuhai
Publisher
World Scientific Pub Co Pte Ltd
Subject
Discrete Mathematics and Combinatorics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献