A note on the relationship between graph energy and determinant of adjacency matrix

Author:

Milovanović Igor Ž.1,Milovanović Emina I.1,Matejić Marjan M.1,Ali Akbar2ORCID

Affiliation:

1. Faculty of Electronic Engineering, University of Niš, Aleksandra Medvedeva 14, P.O. Box 73, 18000 Niš, Serbia

2. Knowledge Unit of Science, University of Management and Technology, Sialkot 51310, Pakistan

Abstract

Let [Formula: see text] be a simple graph of order [Formula: see text], without isolated vertices. Denote by [Formula: see text] the adjacency matrix of [Formula: see text]. Eigenvalues of the matrix [Formula: see text], [Formula: see text], form the spectrum of the graph [Formula: see text]. An important spectrum-based invariant is the graph energy, defined as [Formula: see text]. The determinant of the matrix [Formula: see text] can be calculated as [Formula: see text]. Recently, Altindag and Bozkurt [Lower bounds for the energy of (bipartite) graphs, MATCH Commun. Math. Comput. Chem. 77 (2017) 9–14] improved some well-known bounds on the graph energy. In this paper, several inequalities involving the graph invariants [Formula: see text] and [Formula: see text] are derived. Consequently, all the bounds established in the aforementioned paper are improved.

Publisher

World Scientific Pub Co Pte Lt

Subject

Discrete Mathematics and Combinatorics

Reference24 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3