High generalization performance structured self-attention model for knapsack problem

Author:

Ding Man1,Han Congying12,Guo Tiande12

Affiliation:

1. School of Mathematical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China

2. Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, No. 80 Zhonguancun East Road, Beijing 100190, P. R. China

Abstract

The end-to-end learning approaches possess the advantages of high efficiency, rapidity and superior solving precision for combinatorial optimization problems, while exploring generalization to instances different from training scale is an open question. In this paper, we focus on the knapsack problem (KP) and employ an end-to-end data-driven approach based on attention model incorporated with different forms of baseline of policy gradient algorithm to solve KP. We first investigate the generalization performance of the proposed approach for KP on various problem scales with different capacities. The experimental results show that the end-to-end model possesses certain learning and generalization abilities to discover the intrinsic characteristics between instances, then guides to solve other instances of different scales.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Discrete Mathematics and Combinatorics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3