Affiliation:
1. Department of Mathematics, University of Chicago, Chicago, Illinois, 60637, USA
2. Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4, Canada
Abstract
A monotone homotopy is a homotopy composed of simple closed curves which are also pairwise disjoint. In this paper, we prove a “gluing” theorem for monotone homotopies; we show that two monotone homotopies which have appropriate overlap can be replaced by a single monotone homotopy. The ideas used to prove this theorem are used in [G. R. Chambers and Y. Liokumovich, Existence of minimal hypersurfaces in complete manifolds of finite volume, arXiv:1609.04058] to prove an analogous result for cycles, which forms a critical step in their proof of the existence of minimal surfaces in complete non-compact manifolds of finite volume. We also show that, if monotone homotopies exist, then fixed point contractions through short curves exist. In particular, suppose that [Formula: see text] is a simple closed curve of a Riemannian surface, and that there exists a monotone contraction which covers a disc which [Formula: see text] bounds consisting of curves of length [Formula: see text]. If [Formula: see text] and [Formula: see text], then there exists a homotopy that contracts [Formula: see text] to [Formula: see text] over loops that are based at [Formula: see text] and have length bounded by [Formula: see text], where [Formula: see text] is the diameter of the surface. If the surface is a disc, and if [Formula: see text] is the boundary of this disc, then this bound can be improved to [Formula: see text].
Publisher
World Scientific Pub Co Pte Lt
Subject
Geometry and Topology,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献