The geometry of k-free hyperbolic 3-manifolds

Author:

Guzman R. K.1,Shalen P. B.2ORCID

Affiliation:

1. Department of Mathematics, University of Chicago, 5734 S. University Ave., Chicago, IL 60637-1514, USA

2. Department of Mathematics, Statistics and Computer Science (M/C 249), University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607-7045, USA

Abstract

We investigate the geometry of closed, orientable, hyperbolic 3-manifolds whose fundamental groups are [Formula: see text]-free for a given integer [Formula: see text]. We show that any such manifold [Formula: see text] contains a point [Formula: see text] with the following property: If [Formula: see text] is the set of maximal cyclic subgroups of [Formula: see text] that contain non-trivial elements represented by loops of [Formula: see text], then for every subset [Formula: see text], we have rank [Formula: see text]. This generalizes to all [Formula: see text] results proved in [J. W. Anderson, R. D. Canary, M. Culler and P. B. Shalen, Free Kleinian groups and volumes of hyperbolic 3-manifolds, J. Differential Geom. 43 (1996) 738–782; M. Culler and P. B. Shalen, 4-free groups and hyperbolic geometry, J. Topol. 5 (2012) 81–136], which have been used to relate the volume of a hyperbolic manifold to its topological properties, and it strictly improves on the result obtained in [R. K. Guzman, Hyperbolic 3-manifolds with [Formula: see text]-free fundamental group, Topology Appl. 173 (2014) 142–156] for [Formula: see text]. The proof avoids the use of results about ranks of joins and intersections in free groups that were used in [M. Culler and P. B. Shalen, 4-free groups and hyperbolic geometry, J. Topol. 5 (2012) 81–136; R. K. Guzman, Hyperbolic 3-manifolds with [Formula: see text]-free fundamental group, Topology Appl. 173 (2014) 142–156].

Publisher

World Scientific Pub Co Pte Lt

Subject

Geometry and Topology,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Realizable ranks of joins and intersections of subgroups in free groups;International Journal of Algebra and Computation;2019-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3