Affiliation:
1. Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
Abstract
Given a hyperbolic surface, the set of all closed geodesics whose length is minimal forms a graph on the surface, in fact a so-called fat graph, which we call the systolic graph. We study which fat graphs are systolic graphs for some surface (we call these admissible).There is a natural necessary condition on such graphs, which we call combinatorial admissibility. Our first main result is that this condition is also sufficient.It follows that a sub-graph of an admissible graph is admissible. Our second major result is that there are infinitely many minimal non-admissible fat graphs (in contrast, for instance, to the classical result that there are only two minimal non-planar graphs).
Publisher
World Scientific Pub Co Pte Lt
Subject
Geometry and Topology,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. EMBEDDING OF METRIC GRAPHS ON HYPERBOLIC SURFACES;Bulletin of the Australian Mathematical Society;2019-02-13