Fitting a manifold of large reach to noisy data

Author:

Fefferman Charles1ORCID,Ivanov Sergei2ORCID,Lassas Matti3ORCID,Narayanan Hariharan4ORCID

Affiliation:

1. Princeton University, Mathematics Department, Fine Hall, Washington Road, Princeton NJ, 08544-1000, USA

2. St. Petersburg Department of Steklov Institute of Mathematics, Russian Academy of Sciences, 27 Fontanka, 191023 St. Petersburg, Russia

3. University of Helsinki, Department of Mathematics and Statistics, P. O. Box 68, 00014, Helsinki, Finland

4. School of Technology and Computer Science, Tata Institute for Fundamental Research, Mumbai 400005, India

Abstract

Let [Formula: see text] be a [Formula: see text]-smooth compact submanifold of dimension [Formula: see text]. Assume that the volume of [Formula: see text] is at most [Formula: see text] and the reach (i.e. the normal injectivity radius) of [Formula: see text] is greater than [Formula: see text]. Moreover, let [Formula: see text] be a probability measure on [Formula: see text] whose density on [Formula: see text] is a strictly positive Lipschitz-smooth function. Let [Formula: see text], [Formula: see text] be [Formula: see text] independent random samples from distribution [Formula: see text]. Also, let [Formula: see text], [Formula: see text] be independent random samples from a Gaussian random variable in [Formula: see text] having covariance [Formula: see text], where [Formula: see text] is less than a certain specified function of [Formula: see text] and [Formula: see text]. We assume that we are given the data points [Formula: see text] [Formula: see text], modeling random points of [Formula: see text] with measurement noise. We develop an algorithm which produces from these data, with high probability, a [Formula: see text] dimensional submanifold [Formula: see text] whose Hausdorff distance to [Formula: see text] is less than [Formula: see text] for [Formula: see text] and whose reach is greater than [Formula: see text] with universal constants [Formula: see text]. The number [Formula: see text] of random samples required depends almost linearly on [Formula: see text], polynomially on [Formula: see text] and exponentially on [Formula: see text].

Funder

United States - Israel Binational Science Foundation

AFOSR

National Science Foundation

RFBR

Academy of Finland

SERB, India

Publisher

World Scientific Pub Co Pte Ltd

Subject

Geometry and Topology,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Single-cell analysis via manifold fitting: A framework for RNA clustering and beyond;Proceedings of the National Academy of Sciences;2024-09-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3