Hamiltonian fragmentation in dimension four with application to spectral estimators

Author:

Alizadeh Habib1ORCID

Affiliation:

1. Université de Montréal, Montreal, Quebec, Canada H3T 1J4, Canada

Abstract

We prove a new Hamiltonian extension and consequently a fragmentation result in dimension [Formula: see text] for the symplectic manifold [Formula: see text]. Polterovich and Shelukhin have recently constructed a family of functionals on the space of time-dependent Hamiltonian functions on [Formula: see text] for rational [Formula: see text], called Lagrangian spectral estimators. Using our fragmentation result we prove that the restriction of their functionals to the subdomain [Formula: see text] is a uniformly [Formula: see text]-continuous functional where [Formula: see text]. As an application of our results, we show that the complement of a Hofer ball in the group of compactly supported Hamiltonian diffeomorphisms of [Formula: see text] contains a [Formula: see text]-open subset. Finally, we show that the aforementioned group equipped with the Hofer distance admits an isometric embedding of an infinite-dimensional flat space for suitable parameters [Formula: see text] and [Formula: see text].

Funder

Courtois Foundation

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3