Geometry of the Wiman–Edge monodromy

Author:

Stover Matthew1ORCID

Affiliation:

1. Department of Mathematics, Temple University, 1805 N. Broad St., Philadelphia, PA 19122, USA

Abstract

The Wiman–Edge pencil is a pencil of genus 6 curves for which the generic member has automorphism group the alternating group [Formula: see text]. There is a unique smooth member, the Wiman sextic, with automorphism group the symmetric group [Formula: see text]. Farb and Looijenga proved that the monodromy of the Wiman–Edge pencil is commensurable with the Hilbert modular group [Formula: see text]. In this note, we give a complete description of the monodromy by congruence conditions modulo 4 and 5. The congruence condition modulo 4 is new, and this answers a question of Farb–Looijenga. We also show that the smooth resolution of the Baily–Borel compactification of the locally symmetric manifold associated with the monodromy is a projective surface of general type. Lastly, we give new information about the image of the period map for the pencil.

Funder

National Science Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Geometry and Topology,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3