General primitivity in the mapping class group

Author:

Kapari Pankaj1ORCID,Rajeevsarathy Kashyap1ORCID

Affiliation:

1. Department of Mathematics, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India

Abstract

For [Formula: see text], let [Formula: see text] be the mapping class group of the closed orientable surface [Formula: see text] of genus [Formula: see text]. In this paper, we obtain necessary and sufficient conditions under which a given pseudo-periodic mapping class can be a root of another up to conjugacy. Using this characterization, the canonical decomposition of (non-periodic) mapping classes, and some known algorithms, we give an algorithm for determining the conjugacy classes of roots of arbitrary mapping classes. Furthermore, we derive realizable bounds on the degrees of roots of pseudo-periodic mapping classes in [Formula: see text], the Torelli group, the level-[Formula: see text] subgroup of [Formula: see text], and the commutator subgroup of [Formula: see text]. In particular, we show that the highest possible (realizable) degree of a root of a pseudo-periodic mapping class [Formula: see text] is [Formula: see text], where [Formula: see text] is a unique positive integer associated with the conjugacy class of [Formula: see text]. Moreover, this bound is realized by a root of a power of a Dehn twist about a separating curve of genus [Formula: see text] in [Formula: see text], where [Formula: see text]. Finally, for [Formula: see text], we show that any pseudo-periodic mapping class having a nontrivial periodic component that is not the hyperelliptic involution, normally generates [Formula: see text]. Consequently, we establish that [Formula: see text] is normally generated by a root of bounding pair map or a root of a nontrivial power of a Dehn twist.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Geometry and Topology,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3