Affiliation:
1. Department of Mathematics, University of California, Santa Barbara, California, USA
Abstract
We establish enhanced bounds on Cheeger–Gromov [Formula: see text]-invariants for general 3-manifolds and yet stronger bounds for special classes of 3-manifold. As key ingredients, we construct chain null-homotopies whose complexity is linearly bounded by its boundary. This result can be regarded as an algebraic topological analogue of Gromov’s conjecture for quantitative topology. The author hopes for applications to various fields including the smooth knot concordance group, quantitative topology and complexity theory.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Geometry and Topology,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献