Section problems for configuration spaces of surfaces

Author:

Chen Lei1ORCID

Affiliation:

1. California Institute of Technology, Department of Mathematics, Pasadena CA 91125, USA

Abstract

In this paper, we give a close-to-sharp answer to the basic questions: When is there a continuous way to add a point to a configuration of [Formula: see text] ordered points on a surface [Formula: see text] of finite type so that all the points are still distinct? When this is possible, what are all the ways to do it? More precisely, let PConf[Formula: see text] be the space of ordered [Formula: see text]-tuple of distinct points in [Formula: see text]. Let [Formula: see text] be the map given by [Formula: see text]. We classify all continuous sections of [Formula: see text] up to homotopy by proving the following: (1) If [Formula: see text] and [Formula: see text], any section of [Formula: see text] is either “adding a point at infinity” or “adding a point near [Formula: see text]”. (We define these two terms in Sec. 2.1; whether we can define “adding a point near [Formula: see text]” or “adding a point at infinity” depends in a delicate way on properties of [Formula: see text].) (2) If [Formula: see text] a [Formula: see text]-sphere and [Formula: see text], any section of [Formula: see text] is “adding a point near [Formula: see text]”; if [Formula: see text] and [Formula: see text], the bundle [Formula: see text] does not have a section. (We define this term in Sec. 3.2). (3) If [Formula: see text] a surface of genus [Formula: see text] and for [Formula: see text], we give an easy proof of [D. L. Gonçalves and J. Guaschi, On the structure of surface pure braid groups, J. Pure Appl. Algebra 182 (2003) 33–64, Theorem 2] that the bundle [Formula: see text] does not have a section.

Publisher

World Scientific Pub Co Pte Lt

Subject

Geometry and Topology,Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Section problems for configurations of points on the Riemann sphere;Algebraic & Geometric Topology;2020-12-08

2. Adding a point to configurations in closed balls;Proceedings of the American Mathematical Society;2019-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3