Homological eigenvalues of graph p-Laplacians

Author:

Zhang Dong1

Affiliation:

1. LMAM and School of Mathematical Sciences, Peking University, 100871 Beijing, P. R. China

Abstract

Inspired by persistent homology in topological data analysis, we introduce the homological eigenvalues of the graph [Formula: see text]-Laplacian [Formula: see text], which allows us to analyze and classify non-variational eigenvalues. We show the stability of homological eigenvalues, and we prove that for any homological eigenvalue [Formula: see text], the function [Formula: see text] is locally increasing, while the function [Formula: see text] is locally decreasing. As a special class of homological eigenvalues, the min–max eigenvalues [Formula: see text] are locally Lipschitz continuous with respect to [Formula: see text]. We also establish the monotonicity of [Formula: see text] and [Formula: see text] with respect to [Formula: see text]. These results systematically establish a refined analysis of [Formula: see text]-eigenvalues for varying [Formula: see text], which lead to several applications, including: (1) settle an open problem by Amghibech on the monotonicity of some function involving eigenvalues of [Formula: see text]-Laplacian with respect to [Formula: see text]; (2) resolve a question asking whether the third eigenvalue of graph [Formula: see text]-Laplacian is of min–max form; (3) refine the higher-order Cheeger inequalities for graph [Formula: see text]-Laplacians by Tudisco and Hein, and extend the multi-way Cheeger inequality by Lee, Oveis Gharan and Trevisan to the [Formula: see text]-Laplacian case. Furthermore, for the 1-Laplacian case, we characterize the homological eigenvalues and min–max eigenvalues from the perspective of topological combinatorics, where our idea is similar to the authors’ work on discrete Morse theory.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Geometry and Topology,Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Curvature, Diameter and Signs of Graphs;The Journal of Geometric Analysis;2024-08-31

2. Nodal domain theorems for $p$-Laplacians on signed graphs;Journal of Spectral Theory;2023-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3