Affiliation:
1. Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
Abstract
We use meromorphic quadratic differentials with higher order poles to parametrize the Teichmüller space of crowned hyperbolic surfaces. Such a surface is obtained on uniformizing a compact Riemann surface with marked points on its boundary components, and has noncompact ends with boundary cusps. This extends Wolf’s parametrization of the Teichmüller space of a closed surface using holomorphic quadratic differentials. Our proof involves showing the existence of a harmonic map from a punctured Riemann surface to a crowned hyperbolic surface, with prescribed principal parts of its Hopf differential which determine the geometry of the map near the punctures.
Publisher
World Scientific Pub Co Pte Lt
Subject
Geometry and Topology,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献