Mental Health Problems Prediction Using Machine Learning Techniques

Author:

Cheng Jia-Pao1,Haw Su-Cheng1

Affiliation:

1. Faculty of Computing and informatics, Multimedia University (Malaysia)

Abstract

Mental health problems encompass a range of conditions that can impact an individual's emotions and behaviors. The conventional methods of mental illness prediction often suffer from the issue of either over-detection or under-detection and the time-consuming manual review process of patients' data during screening sessions. Therefore, this research aims to utilize machine learning techniques to predict mental health problems, complementing the traditional clinical screening and diagnosis process. The proposed models in this project: Logistic Regression, K-Nearest Neighbors, and Random Forest leverage relevant factors from the dataset concerning mental health survey published by Open Source Mental Disorders in 2014 to predict mental health problems. Feature selection and hyperparameter fine-tuning are employed to identify the factors contributing to mental health problems and enhance the performance of the models. The evaluation of these models is measured using accuracy, recall, precision, F1 score, and AUROC. Experimental evaluation results indicated that the Random Forest model utilizing hyperparameters derived from the RandomizedSearchCV method outperforms during model selection using cross-validation. When predicting test set data, it exhibits a good generalization with an accuracy of 83.23%, recall of 89.87%, precision of 78.02%, F1 score of 83.53%, and AUROC of 83.57%.

Publisher

Multimedia University

Subject

Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Classifier for Optimizing Mental Health Prediction: Feature Engineering and Fusion Technique;International Journal of Mental Health and Addiction;2024-06-21

2. The Psychological Health Counseling Management System Based on the Apriori Algorithm;2024 International Conference on Machine Intelligence and Digital Applications;2024-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3