PARAMETER OPTIMIZATION OF LQR CONTROLLER APPLIED TO THREE DEGREES OF FREEDOM SYSTEM WITH HYBRID APPROACH

Author:

Büyüker Yasin1ORCID,İlhan İlhan1ORCID

Affiliation:

1. NECMETTİN ERBAKAN ÜNİVERSİTESİ

Abstract

There have been numerous studies on the control of quadcopters. These studies mainly aim to control the flight behavior of quadcopters. To achieve this, researchers have been developing new tools and testing new methods. One of the developed tools is the 3-DOF Hover system, which enables researchers to analyze the flight behaviors of quadcopters, such as roll, pitch, and yaw, even in a physically limited area or only in a computer environment. The control method applied in the control of the 3-DOF Hover system has been determined by the manufacturer as Linear-Quadratic Regulator (LQR). LQR has control parameters that are complex to calculate. This complex calculation process creates an optimization problem. Beyond controlling the 3-DOF Hover system using LQR, this study focuses on calculating the complex control parameters of LQR using optimization algorithms when controlling a dynamic system with LQR. This study includes well-known algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Simulated Annealing (SA), as well as an innovative approach known Gray Wolf Optimization (GWO). These algorithms were selected due to their proven effectiveness in various studies. Based on the results obtained from these algorithms, a hybrid algorithm incorporating SA and GWO is proposed. The aim of this hybrid algorithm is to combine the advantages of different methods and achieve a more effective and efficient optimization process. The mentioned hybrid algorithm, obtained by combining SA and GWO, is named hSA-GWO. This hSA-GWO is compared with traditional algorithms, and the comparison results show that the proposed hybrid algorithm can be used as an alternative and competitive method for controlling the flight behaviors of quadcopters.

Publisher

Konya Muhendislik Bilimleri Dergisi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3