ACADEMIC TEXT CLUSTERING USING NATURAL LANGUAGE PROCESSING

Author:

TAŞKIRAN Salimkan Fatma1,KAYA Ersin1ORCID

Affiliation:

1. KONYA TECHNICAL UNIVERSITY

Abstract

Accessing data is very easy nowadays. However, to use these data in an efficient way, it is necessary to get the right information from them. Categorizing these data in order to reach the needed information in a short time provides great convenience. All the more, while doing research in the academic field, text-based data such as articles, papers, or thesis studies are generally used. Natural language processing and machine learning methods are used to get the right information we need from these text-based data. In this study, abstracts of academic papers are clustered. Text data from academic paper abstracts are preprocessed using natural language processing techniques. A vectorized word representation extracted from preprocessed data with Word2Vec and BERT word embeddings and representations are clustered with four clustering algorithms.

Publisher

Konya Muhendislik Bilimleri Dergisi

Subject

General Medicine

Reference37 articles.

1. Adalı, E. (2012). Doğal Dil İşleme. Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi, 5(2).

2. Aggarwal, C. C., & Zhai, C. (2012). A survey of text clustering algorithms. In Mining text data (pp. 77-128): Springer.

3. Alexandrov, M., Gelbukh, A., & Rosso, P. (2005). An approach to clustering abstracts. Paper presented at the International Conference on Application of Natural Language to Information Systems.

4. Amasyali, M. F., Balc1, S., Mete, E., & Varl1, E. N. (2012). Türkçe Metinlerin Sınıflandırılmasında Metin Temsil Yöntemlerinin Performans Karşılaştırılması / A Comparison of Text Representation Methods for Turkish Text Classification.

5. Amasyalı, M. F., & Diri, B. (2006). Automatic Turkish text categorization in terms of author, genre and gender. International Conference on Application of Natural Language to Information Systems,

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3