DETERMINING THE MOST POWERFUL FEATURES IN THE DESIGN OF AN AUTOMATIC SLEEP STAGING SYSTEM

Author:

ÖZŞEN Seral1ORCID,KOCA Yasin2ORCID,TEZEL Gülay2ORCID,ÇEPER Sena2,KÜÇÇÜKTÜRK Serkan3ORCID,VATANSEV Hülya4ORCID

Affiliation:

1. MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ

2. KONYA TEKNİK ÜNİVERSİTESİ

3. KARAMANOĞLU MEHMETBEY ÜNİVERSİTESİ

4. NECMETTİN ERBAKAN ÜNİVERSİTESİ

Abstract

Spending too much time on manual sleep staging is tiring and challenging for sleep specialists. In addition, experience in sleep staging also creates different decisions for sleep experts. The search for finding an effective automatic sleep staging system has been accelerated in the last few years. There are many studies dealing with this problem but very few of them were conducted with real sleep data. Studies have been carried out on mostly processed and cleaned-ready data sets. In addition, there are few studies in which the data distribution in sleep stages is balanced (equal numbers of epochs from each stage are used), and it is seen that the performance of these studies is quite low compared to other studies. When the literature studies are examined, there is a wide range of studies in which many features are extracted, many feature selection methods are used, many classifiers are applied and various combinations of these are available. For this reason, to determine the best-performing features and the most powerful features, 168 features were extracted from the real EEG, EOG, and EMG signals of 124 patients. These features were selected with 7 different feature selection methods, and classification was carried out with 4 classifiers. In general, the ReliefF feature selection method has performed best, and the Bagged Tree classifier has reached the highest classification accuracy of 67.92% with the use of nonlinear features.

Funder

TÜBİTAK

Publisher

Konya Muhendislik Bilimleri Dergisi

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3