COMPARATIVE PERFORMANCE ANALYSIS OF A FEED-FORWARD NEURAL NETWORK-BASED MPPT FOR RAPIDLY CHANGING CLIMATIC CONDITIONS

Author:

ALHAJ OMAR Fuad1ORCID

Affiliation:

1. ZONGULDAK BULENT ECEVİT UNİVERSİTY

Abstract

Rapid and abrupt changes in climatic conditions present a challenge to classical MPPT techniques as they drift from the MPP, resulting in loss of power. This paper presents a new MPPT technique based on a feed-forward artificial neural network (FFANN) and a direct control technique. In the proposed approach, FFAAN estimates the optimum value of the PV output voltage V_MPP, while the direct control technique achieves an optimal adjustment of the duty cycle making the operating point at MPP. To evaluate the performance of the proposed technique, the accurate electrical model of the system parts was built and simulated in MATLAB/Simulink environment. The simulation results are collected under rapidly changing climatic conditions. Simulation results show that the proposed MPPT technique achieves higher performance in terms of tracking efficiency and convergence speed compared to both the IC-based MPPT and FL-based MPPT systems. The results show that the proposed technique accurately estimates V_MPP, achieving a tracking efficiency of 99.9%, while the tracking efficiency is 94% when using FL-based MPPT and 91.5% when using IC-based MPPT. This demonstrates that the proposed technique exhibits superior performance under rapidly changing climatic conditions and increases energy production efficiency compared to classical techniques.

Publisher

Konya Muhendislik Bilimleri Dergisi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3