EXTRACTION OF PHENOLIC COMPOUNDS FROM FENUGREEK SEEDS: MODELLING AND ANALYSIS USING ARTIFICIAL NEURAL NETWORKS

Author:

BEYHAN Selami1ORCID,İŞLEROĞLU Hilal2ORCID

Affiliation:

1. İZMİR DEMOKRASİ ÜNİVERSİTESİ

2. TOKAT GAZIOSMANPASA UNIVERSITY

Abstract

This study introduces the modeling and analysis of the extraction process of bioactive compounds from fenugreek seeds in different solid-to-solvent ratios (0.5-60 g/L) and extraction times. Maceration was applied with agitation for the extraction processes and total phenolic compounds, total flavonoid content and antioxidant activity of the extracts were measured as experimental data. The amount of extractable phenolic compounds having antioxidant effect was increased by adjusting the solid-to-solvent ratio. According to obtained results, the highest values were determined as 12564.08±376.88 mg gallic acid/100 g dry sample, 7540.44±39.67 mg quercetin/100 g dry sample and 1904.80±17.43 mM Trolox/100 g dry sample for total phenolic compounds, total flavonoid content, and antioxidant activity, respectively. The extraction process was modeled using standard Artificial Neural Networks (ANN) and Pi-Sigma Neural-Networks (PSNN). The PSNN model had a higher prediction efficiency with lower RMSE (%) values varied between 0.94% and 1.30% for both training and testing.

Publisher

Konya Muhendislik Bilimleri Dergisi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3