HEAT TRANSFER EXAMINATION OF OSCILLATING NANOFLUID FLOW IN A RECTANGULAR CORRUGATED CHANNEL WITH VERTICAL PLATES: A NUMERICAL STUDY

Author:

Akçay Selma1ORCID

Affiliation:

1. Çankırı Karatekin Üniversitesi

Abstract

This study numerically focused investigating the thermal performance of flow oscillations in a rectangular corrugated channel with vertical plates on top wall. The numerical study was performed with the ANSYS Fluent software, and the SIMPLE algorithm was utilized to solve the pressure-velocity coupling. The top wall of the channel was adiabatic and included vertical plates. The bottom wall of the channel was rectangular grooved and kept at Tw=360 K. Suspension of Al2O3 nanoparticles into water was used as the fluid. The particle volume fraction in the suspension was kept constant at φ = 5%. Oscillating amplitude (A) and Strouhal number (St) were maintained constant at A = 1 and St = 2, respectively. In the presented study, the effects of vertical plates, Al2O3-water nanofluid and pulsating flow on flow and heat transfer were analyzed separately at different Reynolds numbers (200 ≤ Re ≤ 800). The Nusselt number (Nu), relative friction factor (frel) and performance evaluation criteria (PEC) were obtained for different Reynolds numbers. The temperature and velocity fields were acquired for varying parameters. The results demonstrated that the flow and temperature structures were significantly influenced by the channel geometry and oscillating flow. Heat transfer considerably enhanced with the oscillating flow at the high Re. At Re = 800, thermal improvement for oscillating flow of the nanofluid in the channel with plates increased by nearly 1.57 times relative to the steady case of the basic fluid in the channel without plates.

Funder

This study did not receive funding from any provider.

Publisher

Konya Muhendislik Bilimleri Dergisi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3