Geomorphologic evidence of jökulhlaups along the Hvítá River, southwestern Iceland

Author:

Wells Greta H.,Dugmore Andrew J.,Sæmundsson Þorsteinn,Beach Timothy,Luzzadder-Beach Sheryl,Ben-Yehoshua Daniel

Abstract

Glacial outburst floods (jökulhlaups) have been a significant driver of landscape evolution, environmental change, and geohazards throughout the Quaternary. Iceland experiences more frequent jökulhlaups than nearly anywhere else on Earth, though most research focuses on subglacial volcanogenic floods that drain across outwash plains. Abundant geomorphologic evidence exists for largescale jökulhlaups that drained along the modern-day course of the Hvítá River in southwestern Iceland during early Holocene deglaciation, originating from ice-dammed Glacial Lake Kjölur; yet only one previous publication has investigated these events. This study uses a combination of field mapping and remote sensing to identify new jökulhlaup geomorphologic evidence along the Hvítá River, including erosional landforms such as scoured bedrock, anastomosing channel networks, cataracts, and canyons, and depositional features such as boulder bars and channel infill. We synthesize new findings with previously reported work to: 1) present an updated geomorphologic map of Hvítá jökulhlaup evidence; 2) reconstruct flood drainage routes, landscape impact, hydrology, and relative chronology; and 3) hypothesize scenarios of ice margin position and glacial lake evolution. Interpreting flood landform assemblages reveals a more extensive geomorphologic record than previously reported, with a complex drainage pattern along four separate routes from two potentially different sources. Reconstructed peak flow discharges span four orders of magnitude from 10² to 10$^5$ m³/s. Geomorphologic and paleohydraulic results introduce four hypothesized drainage scenarios, though absolute geochronology is necessary to determine whether multiple floods drained along each route. The Hvítá jökulhlaups yield insight into the timing and dynamics of the final phase of Icelandic Ice Sheet decay, advancing understanding of Iceland’s Pleistocene–Holocene transition, demonstrating the importance of high magnitude, low frequency floods in landscape evolution, and serving as an analogue to ice and meltwater response to past, present, and future climate warming in glaciated regions worldwide.

Publisher

Joklarannsoknafelag Islands

Subject

Geography, Planning and Development,Global and Planetary Change,Literature and Literary Theory,Visual Arts and Performing Arts,Literature and Literary Theory,Philosophy,Visual Arts and Performing Arts,Cultural Studies,General Computer Science,Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Hardware and Architecture,Theoretical Computer Science,Software,Hardware and Architecture,Theoretical Computer Science,Software,Infectious Diseases,Parasitology,Epidemiology,Immunology,Parasitology,Infectious Diseases,Parasitology,Infectious Diseases,Parasitology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Holocene glacial history and landforms of Iceland;European Glacial Landscapes;2024

2. Putting down roots: Afforestation and bank cohesion of Icelandic Rivers;River Research and Applications;2023-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3