Optimization-Based Calibration of Simulation Input Models

Author:

Goeva Aleksandrina1,Lam Henry2ORCID,Qian Huajie2,Zhang Bo3

Affiliation:

1. Broad Institute, Cambridge, Massachusetts 02142;

2. Department of Industrial Engineering and Operations Research, Columbia University, New York, New York 10027;

3. IBM Research AI, Yorktown Heights, New York 10598

Abstract

Studies on simulation input uncertainty are often built on the availability of input data. In this paper, we investigate an inverse problem where, given only the availability of output data, we nonparametrically calibrate the input models and other related performance measures of interest. We propose an optimization-based framework to compute statistically valid bounds on input quantities. The framework utilizes constraints that connect the statistical information of the real-world outputs with the input–output relation via a simulable map. We analyze the statistical guarantees of this approach from the view of data-driven distributionally robust optimization, and show how they relate to the function complexity of the constraints arising in our framework. We investigate an iterative procedure based on a stochastic quadratic penalty method to approximately solve the resulting optimization. We conduct numerical experiments to demonstrate our performances in bounding the input models and related quantities.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3