The Benders Dual Decomposition Method

Author:

Rahmaniani Ragheb1ORCID,Ahmed Shabbir2ORCID,Crainic Teodor Gabriel3,Gendreau Michel4,Rei Walter2ORCID

Affiliation:

1. Optimized Markets Inc., Pittsburgh, Pennsylvania 15213;

2. School of Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332;

3. CIRRELT & School of Management for École des Sciences de la Gestion, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada;

4. CIRRELT & Department of Mathematics and Industrial Engineering, École Polytechnique de Montréal, Montréal, Québec H3C 3A7, Canada

Abstract

Many methods that have been proposed to solve large-scale MILP problems rely on the use of decomposition strategies. These methods exploit either the primal or dual structures of the problems by applying the Benders decomposition or Lagrangian dual decomposition strategy, respectively. In “The Benders Dual Decomposition Method,” Rahmaniani, Ahmed, Crainic, Gendreau, and Rei propose a new and high-performance approach that combines the complementary advantages of both strategies. The authors show that this method (i) generates stronger feasibility and optimality cuts compared with the classical Benders method, (ii) can converge to the optimal integer solution at the root node of the Benders master problem, and (iii) is capable of generating high-quality incumbent solutions at the early iterations of the algorithm. The developed algorithm obtains encouraging computational results when used to solve various benchmark MILP problems.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3