Modifying Transactional Databases to Hide Sensitive Association Rules

Author:

Menon Syam1ORCID,Ghoshal Abhijeet2ORCID,Sarkar Sumit1ORCID

Affiliation:

1. Jindal School of Management, University of Texas at Dallas, Richardson, Texas 75080;

2. Gies College of Business, University of Illinois Urbana–Champaign, Champaign, Illinois 61820

Abstract

Although firms recognize the value in sharing data with supply chain partners, many remain reluctant to share for fear of sensitive information potentially making its way to competitors. Approaches that can help hide sensitive information could alleviate such concerns and increase the number of firms that are willing to share. Sensitive information in transactional databases often manifests itself in the form of association rules. The sensitive association rules can be concealed by altering transactions so that they remain hidden when the data are mined by the partner. The problem of hiding these rules in the data are computationally difficult (NP-hard), and extant approaches are all heuristic in nature. To our knowledge, this is the first paper that introduces the problem as a nonlinear integer formulation to hide the sensitive association rule while minimizing the alterations needed in the data set. We apply transformations that linearize the constraints and derive various results that help reduce the size of the problem to be solved. Our results show that although the nonlinear integer formulations are not practical, the linearizations and problem-reduction steps make a significant impact on solvability and solution time. This approach mitigates potential risks associated with sharing and should increase data sharing among supply chain partners.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Library and Information Sciences,Information Systems and Management,Computer Networks and Communications,Information Systems,Management Information Systems

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3