Cognitive Challenges in Human–Artificial Intelligence Collaboration: Investigating the Path Toward Productive Delegation

Author:

Fügener Andreas1ORCID,Grahl Jörn1ORCID,Gupta Alok2ORCID,Ketter Wolfgang13ORCID

Affiliation:

1. University of Cologne, 50923 Cologne, Germany;

2. University of Minnesota, Minneapolis, Minnesota 55455;

3. Erasmus University Rotterdam, 3062 PA Rotterdam, Netherlands

Abstract

A consensus is beginning to emerge that the next phase of artificial intelligence (AI) induction in business organizations will require humans to work with AI in a variety of work arrangements. This article explores the issues related to human capabilities to work with AI. A key to working in many work arrangements is the ability to delegate work to entities that can do them most efficiently. Modern AI can do a remarkable job of efficient delegation to humans because it knows what it knows well and what it does not. Humans, on the other hand, are poor judges of their metaknowledge and are not good at delegating knowledge work to AI—this might prove to be a big stumbling block to create work environments where humans and AI work together. Humans have often created machines to serve them. The sentiment is perhaps exemplified by Oscar Wilde’s statement that “civilization requires slaves…. Human slavery is wrong, insecure and demoralizing. On mechanical slavery, on the slavery of the machine, the future of the world depends.” However, the time has come when humans might switch roles with machines. Our study highlights capabilities that humans need to effectively work with AI and still be in control rather than just being directed.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Library and Information Sciences,Information Systems and Management,Computer Networks and Communications,Information Systems,Management Information Systems

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3