Improving Students’ Argumentation Skills Using Dynamic Machine-Learning–Based Modeling

Author:

Wambsganss Thiemo1ORCID,Janson Andreas2ORCID,Söllner Matthias3ORCID,Koedinger Ken4ORCID,Leimeister Jan Marco25ORCID

Affiliation:

1. Institute Digital Technology Management, Bern University of Applied Sciences, 3005 Bern, Switzerland;

2. Institute of Information Systems and Digital Business, University of St. Gallen, 9000 St. Gallen, Switzerland;

3. Research Center for IS Design, Information Systems and Systems Engineering, University of Kassel, 34121 Kassel, Germany;

4. Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213;

5. Research Center for IS Design, Information Systems, University of Kassel, 34121 Kassel, Germany

Abstract

This study explores the potential of dynamic, machine learning (ML)-based modeling to enhance students’ argumentation skills—a crucial component in education and professional success. Traditional educational tools often rely on static modeling, which does not adapt to individual learner needs or provide real-time feedback. In contrast, our research introduces an innovative ML-based system designed to offer dynamic, personalized feedback on argumentation skills. We conducted three empirical studies comparing this system against traditional methods such as scripted and adaptive support modeling. Our results show that dynamic behavioral modeling significantly improves learners’ objective argumentation skills across domains, outperforming all established methods. The results further indicate that, compared with adaptive support, the effect of the dynamic modeling approach holds across complex (large effect) and simple tasks (medium effect) and supports learners with lower and higher expertise alike. This research has important implications for educational policy and practice; incorporating such dynamic systems could transform learning environments by providing scalable, individualized support. This would not only foster essential skills but also cater to diverse learner profiles, potentially reducing educational disparities. Our work suggests a shift toward integrating more adaptive technologies in educational settings to better prepare students for the demands of the modern workforce.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Role of Digital Educational Platforms in Shaping New Models of Economic Development;Проблеми сучасних трансформацій. Серія: економіка та управління;2024-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3