Calibration of Heterogeneous Treatment Effects in Randomized Experiments

Author:

Leng Yan1ORCID,Dimmery Drew2ORCID

Affiliation:

1. McCombs School of Business, The University of Texas at Austin, Austin, Texas 78705;

2. Research Network Data Science, University of Vienna, 1090 Vienna, Austria

Abstract

Machine learning is commonly used to estimate the heterogeneous treatment effects (HTEs) in randomized experiments. Using large-scale randomized experiments on Facebook and Criteo platforms, we observe substantial discrepancies between machine learning-based treatment effect estimates and difference-in-means estimates directly from the randomized experiment. This paper provides a two-step framework for practitioners and researchers to diagnose and rectify this discrepancy. We first introduce a diagnostic tool to assess whether bias exists in the model-based estimates from machine learning. If bias exists, we then offer a model-agnostic method to calibrate any HTE estimates to known, unbiased, subgroup difference-in-means estimates, ensuring that the sign and magnitude of the subgroup estimates approximate the model-free benchmarks. This calibration method requires no additional data and can be scaled for large data sets. To highlight potential sources of bias, we theoretically show that this bias can result from regularization, and further use synthetic simulation to show biases result from misspecification and high-dimensional features. We demonstrate the efficacy of our calibration method using extensive synthetic simulations and two real-world randomized experiments. We further demonstrate the practical value of this calibration in three typical policy-making settings: a prescriptive, budget-constrained optimization framework; a setting seeking to maximize multiple performance indicators; and a multitreatment uplift modeling setting.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Library and Information Sciences,Information Systems and Management,Computer Networks and Communications,Information Systems,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3