Measuring Brand Favorability Using Large-Scale Social Media Data

Author:

Zhang Kunpeng1ORCID,Moe Wendy2

Affiliation:

1. Department of Decision, Operations & Information Technologies, Robert H. Smith School of Business, University of Maryland, College Park, Maryland 20740;

2. Department of Marketing, Robert H. Smith School of Business, University of Maryland, College Park, Maryland 20740

Abstract

For decades, brand managers have monitored brand health with the use of consumer surveys, which have been refined to address issues related to sampling bias, response bias, leading questions, etc. However, with the advance of Web 2.0 and the internet, consumers have turned to social media to express their opinions on a variety of topics and, subsequently, have generated an extremely large amount of interaction data with brands. Analyzing these publicly available data to measure brand health has attracted great research attention. In this study, we focus on developing a method to measure brand favorability while accounting for the measure biases exhibited by social media posters. Specifically, we propose a probabilistic graphical model–based collective inference framework and implement a block-based Markov chain Monte Carlo sampling technique to obtain an adjusted brand favorability measure that is correlated with traditional survey-based measures used by brands. To demonstrate the effectiveness of our model, we evaluate it using more than 3,300 brands and about 205 million unique users that interact with those brands collected through Facebook. Our model performs very well, providing brand managers with a new method to more accurately measure consumer opinions toward the brand using social media data.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Library and Information Sciences,Information Systems and Management,Computer Networks and Communications,Information Systems,Management Information Systems

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3