Know Thy Context: Parsing Contextual Information from User Reviews for Recommendation Purposes

Author:

Bauman Konstantin1ORCID,Tuzhilin Alexander2

Affiliation:

1. Fox School of Business, Temple University, Philadelphia, Pennsylvania 19122;

2. Stern School of Business, New York University, New York, New York 10012

Abstract

In this paper, we study an important problem of parsing contextual information from user reviews for recommendation purposes. First, we study the ways contextual information is expressed in user reviews and obtain novel insights about it. Among other things, we demonstrate that such type of information tends to appear at the beginning of the review, in longer sentences, in the sentences written in the past tense or using gerund form, and in the sentences referring to some points in time. Second, we propose a novel context parsing method for systematically extracting contextual information from user-generated reviews that rely on the insights obtained in our study. We apply the proposed method to three different Yelp applications (restaurants, hotels, and beauty & spas) and demonstrate that it works well and leads to better recommendation performance than the baseline approaches. Our method systematically extracts more comprehensive sets of relevant contextual variables and corresponding phrases than the baselines. Our analysis also shows the importance of the newly discovered contextual information for recommendation purposes. The obtained results and the proposed method can help to get more comprehensive knowledge about contextual variables in a given application that leads to better recommendations.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Library and Information Sciences,Information Systems and Management,Computer Networks and Communications,Information Systems,Management Information Systems

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3