Scenario-Based Robust Optimization for Two-Stage Decision Making Under Binary Uncertainty

Author:

Wang Kai1ORCID,Aydemir Mehmet2,Jacquillat Alexandre3ORCID

Affiliation:

1. School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China;

2. Walmart Global Tech, Dallas, Texas 75202;

3. Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142

Abstract

This paper addresses problems of two-stage optimization under binary uncertainty. We define a scenario-based robust optimization (ScRO) formulation that combines principles of stochastic optimization (by constructing probabilistic scenarios) and robust optimization (by protecting against adversarial perturbations within discrete uncertainty sets). To solve it, we develop a sparse row generation algorithm that iterates between a master problem (which provides a lower bound based on minimal uncertainty sets) and a history-based subproblem (which generates an upper bound and updates minimal uncertainty sets). We generate scenarios and uncertainty sets from element-wise probabilities using a deviation likelihood method or from historical samples using a sample clustering approach. Using public data sets, results suggest that (i) our ScRO formulation outperforms benchmarks based on deterministic, stochastic, and robust optimization; (ii) our deviation likelihood and sample clustering approaches outperform scenario generation baselines; and (iii) our sparse row generation algorithm outperforms off-the-shelf implementation and state-of-the-art cutting plane benchmarks. An application to a real-world ambulance dispatch case study suggests that the proposed modeling and algorithmic approach can reduce the number of late responses by more than 25%. Funding: K. Wang’s research was supported by the National Natural Science Foundation of China [Grants 72322002, 52221005 and 52220105001]

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3