Smart Predict-then-Optimize for Two-Stage Linear Programs with Side Information

Author:

Estes Alexander S.1ORCID,Richard Jean-Philippe P.2ORCID

Affiliation:

1. Robert H. Smith School of Business and Institute of Systems Research, University of Maryland, College Park, Maryland 20742;

2. Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, Minnesota 55455

Abstract

We study two-stage linear programs with uncertainty in the right-hand side in which the uncertain parameters of the problem are correlated with a variable called the side information, which is observed before an action is made. We propose an approach in which a linear regression model is used to provide a point prediction for the uncertain parameters of the problem. We use an approach called smart predict-then-optimize. Rather than minimizing a typical loss function for regression, such as squared error, we approximately minimize the objective value of the resulting solutions to the optimization problem. We conduct computational tests that compare our method with other approaches for optimization problems with side information. The results indicate that our method can provide better objective values in situations where the true model is reasonably close to a linear model. Although the procedure we propose requires a longer time for fitting than existing methods, it requires less time to produce a decision for each given observation of the side information. Supplemental Material: The e-companion is available at https://doi.org/10.1287/ijoo.2023.0088 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey of contextual optimization methods for decision-making under uncertainty;European Journal of Operational Research;2025-01

2. Multi-task Predict-then-Optimize;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3