A Computationally Efficient Benders Decomposition for Energy Systems Planning Problems with Detailed Operations and Time-Coupling Constraints

Author:

Jacobson Anna1ORCID,Pecci Filippo2ORCID,Sepulveda Nestor34ORCID,Xu Qingyu5ORCID,Jenkins Jesse6ORCID

Affiliation:

1. Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, New Jersey 08540;

2. Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08540;

3. Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;

4. McKinsey and Company, New York, New York 10007;

5. Energy Internet Research Institute, Tsinghua University, Beijing 100084, People’s Republic of China;

6. Andlinger Center for Energy and the Environment and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08540

Abstract

Energy systems planning models identify least-cost strategies for expansion and operation of energy systems and provide decision support for investment, planning, regulation, and policy. Most are formulated as linear programming (LP) or mixed integer linear programming (MILP) problems. Despite the relative efficiency and maturity of LP and MILP solvers, large scale problems are often intractable without abstractions that impact quality of results and generalizability of findings. We consider a macro-energy systems planning problem with detailed operations and policy constraints and formulate a computationally efficient Benders decomposition separating investments from operations and decoupling operational timesteps using budgeting variables in the master model. This novel approach enables parallelization of operational subproblems and permits modeling of relevant constraints coupling decisions across time periods (e.g., policy constraints) within a decomposed framework. Runtime scales linearly with temporal resolution; tests demonstrate substantial runtime improvement for all MILP formulations and for some LP formulations depending on problem size relative to analogous monolithic models solved with state-of-the-art commercial solvers. Our algorithm is applicable to planning problems in other domains (e.g., water, transportation networks, production processes) and can solve large-scale problems otherwise intractable. We show that the increased resolution enabled by this algorithm mitigates structural uncertainty, improving recommendation accuracy. Funding: Funding for this work was provided by the Princeton Carbon Mitigation Initiative (funded by a gift from BP) and the Princeton Zero-carbon Technology Consortium (funded by gifts from GE, Google, ClearPath, and Breakthrough Energy). Supplemental Material: The e-companion is available at https://doi.org/10.1287/ijoo.2023.0005 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stabilized Benders decomposition for energy planning under climate uncertainty;European Journal of Operational Research;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3