A Supervised Tensor Dimension Reduction-Based Prognostic Model for Applications with Incomplete Imaging Data

Author:

Zhou Chengyu1,Fang Xiaolei1ORCID

Affiliation:

1. Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina 27606

Abstract

Imaging data-based prognostic models focus on using an asset’s degradation images to predict its time to failure (TTF). Most image-based prognostic models have two common limitations. First, they require degradation images to be complete (i.e., images are observed continuously and regularly over time). Second, they usually employ an unsupervised dimension reduction method to extract low-dimensional features and then use the features for TTF prediction. Because unsupervised dimension reduction is conducted on the degradation images without the involvement of TTFs, there is no guarantee that the extracted features are effective for failure time prediction. To address these challenges, this article develops a supervised tensor dimension reduction-based prognostic model. The model first proposes a supervised dimension reduction method for tensor data. It uses historical TTFs to guide the detection of a tensor subspace to extract low-dimensional features from high-dimensional incomplete degradation imaging data. Next, the extracted features are used to construct a prognostic model based on (log)-location-scale regression. An optimization algorithm for parameter estimation is proposed, and analytical solutions are discussed. Simulated data and a real-world data set are used to validate the performance of the proposed model. History: Bianca Maria Colosimo served as the senior editor for this article Funding: This work was supported by National Science Foundation [2229245]. Data Ethics & Reproducibility Note: The code capsule is available on Code Ocean at https://github.com/czhou9/Code-and-Data-for-IJDS .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tensor Data Analytics in Advanced Manufacturing Processes;Springer Optimization and Its Applications;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3