Cost Patterns of Multiple Chronic Conditions: A Novel Modeling Approach Using a Condition Hierarchy

Author:

Apergi Lida Anna1ORCID,Bjarnadóttir Margrét Vilborg1ORCID,Baras John S.2ORCID,Golden Bruce L.1ORCID

Affiliation:

1. Robert H. Smith School of Business, University of Maryland, College Park, Maryland 20742;

2. Institute for Systems Research, University of Maryland, College Park, Maryland 20740

Abstract

Healthcare cost predictions are widely used throughout the healthcare system. However, predicting these costs is complex because of both uncertainty and the complex interactions of multiple chronic diseases: chronic disease treatment decisions related to one condition are impacted by the presence of the other conditions. We propose a novel modeling approach inspired by backward elimination, designed to minimize information loss. Our approach is based on a cost hierarchy: the cost of each condition is modeled as a function of the number of other, more expensive chronic conditions the individual member has. Using this approach, we estimate the additive cost of chronic diseases and study their cost patterns. Using large-scale claims data collected from 2007 to 2012, we identify members that suffer from one or more chronic conditions and estimate their total 2012 healthcare expenditures. We apply regression analysis and clustering to characterize the cost patterns of 69 chronic conditions. We observe that the estimated cost of some conditions (for example, organic brain problem) decreases as the member’s number of more expensive chronic conditions increases. Other conditions, such as obesity and paralysis, demonstrate the opposite pattern; their contribution to the overall cost increases as the member’s number of other more serious chronic conditions increases. The modeling framework allows us to account for the complex interactions of multimorbidity and healthcare costs and, therefore, offers a deeper and more nuanced understanding of the cost burden of chronic conditions, which can be utilized by practitioners and policy makers to plan, design better intervention, and identify subpopulations that require additional resources. More broadly, our hierarchical model approach captures complex interactions and can be applied to improve decision making when the enumeration of all possible factor combinations is not possible, for example, in financial risk scoring and pay structure design. Supplemental Material: The online supplement is available at https://doi.org/10.1287/ijds.2022.0010 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3