Design and Analysis of Switchback Experiments

Author:

Bojinov Iavor1ORCID,Simchi-Levi David2ORCID,Zhao Jinglong3ORCID

Affiliation:

1. Technology and Operations Management Unit, Harvard Business School, Boston, Massachusetts 02163;

2. Institute for Data, Systems, and Society, Department of Civil and Environmental Engineering, and Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;

3. Operations and Technology Management Department, Questrom School of Business, Boston University, Boston, Massachusetts 02215

Abstract

Switchback experiments, where a firm sequentially exposes an experimental unit to random treatments, are among the most prevalent designs used in the technology sector, with applications ranging from ride-hailing platforms to online marketplaces. Although practitioners have widely adopted this technique, the derivation of the optimal design has been elusive, hindering practitioners from drawing valid causal conclusions with enough statistical power. We address this limitation by deriving the optimal design of switchback experiments under a range of different assumptions on the order of the carryover effect—the length of time a treatment persists in impacting the outcome. We cast the optimal experimental design problem as a minimax discrete optimization problem, identify the worst-case adversarial strategy, establish structural results, and solve the reduced problem via a continuous relaxation. For switchback experiments conducted under the optimal design, we provide two approaches for performing inference. The first provides exact randomization-based p-values, and the second uses a new finite population central limit theorem to conduct conservative hypothesis tests and build confidence intervals. We further provide theoretical results when the order of the carryover effect is misspecified and provide a data-driven procedure to identify the order of the carryover effect. We conduct extensive simulations to study the numerical performance and empirical properties of our results and conclude with practical suggestions. This paper was accepted by George Shanthikumar, big data analytics.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3