Efficient Estimation of Network Games of Incomplete Information: Application to Large Online Social Networks

Author:

Chen Xi1ORCID,van der Lans Ralf2ORCID,Trusov Michael3

Affiliation:

1. Department of Marketing Management, Rotterdam School of Management, Erasmus University, 3062 PA Rotterdam, Netherlands;

2. Department of Marketing, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong;

3. Department of Marketing Robert H. Smith School of Business, University of Maryland, College Park, Maryland 20742

Abstract

This paper presents a structural discrete choice model with social influence for large-scale social networks. The model is based on an incomplete information game and permits individual-specific parameters of consumers. It is challenging to apply this type of models to real-life scenarios for two reasons: (1) The computation of the Bayesian–Nash equilibrium is highly demanding; and (2) the identification of social influence requires the use of excluded variables that are oftentimes unavailable. To address these challenges, we derive the unique equilibrium conditions of the game, which allow us to employ a stochastic Bayesian estimation procedure that is scalable to large social networks. To facilitate the identification, we utilize community-detection algorithms to divide the network into different groups that, in turn, can be used to construct excluded variables. We validate the proposed structural model with the login decisions of more than 25,000 users of an online social game. Importantly, this data set also contains promotions that were exogenously determined and targeted to only a subgroup of consumers. This information allows us to perform exogeneity tests to validate our identification strategy using community-detection algorithms. Finally, we demonstrate the managerial usefulness of the proposed methodology for improving the strategies of targeting influential consumers in large social networks. This paper was accepted by Matthew Shum, marketing.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3