Demand Modeling in the Presence of Unobserved Lost Sales

Author:

Subramanian Shivaram1ORCID,Harsha Pavithra1ORCID

Affiliation:

1. IBM T. J. Watson Research Center, Yorktown Heights, New York 10598

Abstract

We present an integrated optimization approach to parameter estimation for discrete choice demand models where data for one or more choice alternatives are censored. We employ a mixed-integer program (MIP) to jointly determine the prediction parameters associated with the customer arrival rate and their substitutive choices. This integrated approach enables us to recover proven, (near-) optimal parameter values with respect to the chosen loss-minimization (LM) objective function, thereby overcoming a limitation of prior multistart heuristic approaches that terminate without providing precise information on the solution quality. The imputations are done endogenously in the MIP by estimating optimal values for the probabilities of the unobserved choices being selected. Under mild assumptions, we prove that the approach is asymptotically consistent. For large LM instances, we derive a nonconvex-contvex alternating heuristic that can be used to obtain quick, near-optimal solutions. Partial information, user acceptance criteria, model selection, and regularization techniques can be incorporated to enhance practical efficacy. We test the LM model on simulated and real data and present results for a variety of demand-prediction scenarios: single-item, multi-item, time-varying arrival rate, large-scale instances, and a dual-layer estimation model extension that learns the unobserved market shares of competitors. This paper was accepted by Yinyu Ye, optimization.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3