Decisions Under Uncertainty as Bayesian Inference on Choice Options

Author:

Vieider Ferdinand M.12ORCID

Affiliation:

1. RISLab, Department of Economics, Ghent University, 9000 Ghent, Belgium;

2. RISLab Africa, University Mohammed VI Polytechnic, Rabat 11103, Morocco

Abstract

Standard models of decision making under risk and uncertainty are deterministic. Inconsistencies in choices are accommodated by separate error models. The combination of decision model and error model, however, is arbitrary. Here, I derive a model of decision making under uncertainty in which choice options are mentally encoded by noisy signals, which are optimally decoded by Bayesian combination with preexisting information. The model predicts diminishing sensitivity toward both likelihoods and rewards, thus providing cognitive microfoundations for the patterns documented in the prospect theory literature. The model is, however, inherently stochastic, so that choices and noise are determined by the same underlying parameters. This results in several novel predictions, which I test on one existing data set and in two new experiments. This paper was accepted by Manel Baucells, behavioral economics and decision analysis. Funding: The author gratefully acknowledges financial support from the Research Foundation—Flanders (FWO) under the project “Causal Determinants of Preferences” [Grant G008021N] and the special research fund (BOF) at Ghent University under the project “The role of noise in the determination of risk preferences.” Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.00265 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3