Information Design for Congested Social Services: Optimal Need-Based Persuasion

Author:

Anunrojwong Jerry1ORCID,Iyer Krishnamurthy2ORCID,Manshadi Vahideh3ORCID

Affiliation:

1. Columbia Business School, Columbia University, New York, New York 10027;

2. Industrial and Systems Engineering, University of Minnesota, Minneapolis, Minnesota 55455;

3. Yale School of Management, Yale University, New Haven, Connecticut 06511

Abstract

We study the effectiveness of information design in reducing congestion in social services catering to users with varied levels of need. In the absence of price discrimination and centralized admission, the provider relies on sharing information about wait times to improve welfare. We consider a stylized model with heterogeneous users who differ in their private outside options: low-need users have an acceptable outside option to the social service, whereas high-need users have no viable outside option. Upon arrival, a user decides to wait for the service by joining an unobservable first-come-first-serve queue, or leave and seek her outside option. To reduce congestion and improve social outcomes, the service provider seeks to persuade more low-need users to avail their outside option, and thus better serve high-need users. We characterize the Pareto-efficient signaling mechanisms and compare their welfare outcomes against several benchmarks. We show that if either type is the overwhelming majority of the population, then information design does not provide improvement over sharing full information or no information. On the other hand, when the population is sufficiently heterogeneous, information design not only Pareto-dominates full-information and no-information mechanisms, in some regimes it also achieves the same welfare as the “first-best,” that is, the Pareto-efficient centralized admission policy with knowledge of users’ types. This paper was accepted by Gabriel Weintraub, revenue management and market analytics.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3