Monitoring with Limited Information

Author:

Iancu Dan Andrei12ORCID,Trichakis Nikolaos3ORCID,Yoon Do Young4

Affiliation:

1. Stanford Graduate School of Business, Stanford University, Stanford, California 94305;

2. INSEAD, Fontainebleau 77300, France;

3. Operations Research Center and Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;

4. UBER Freight, San Francisco, California 94103

Abstract

We consider a system with an evolving state that can be stopped at any time by a decision maker (DM), yielding a state-dependent reward. The DM does not observe the state except for a limited number of monitoring times, which he must choose, in conjunction with a suitable stopping policy, to maximize his reward. Dealing with these types of stopping problems, which arise in a variety of applications from healthcare to finance, often requires excessive amounts of data for calibration purposes and prohibitive computational resources. To overcome these challenges, we propose a robust optimization approach, whereby adaptive uncertainty sets capture the information acquired through monitoring. We consider two versions of the problem—static and dynamic—depending on how the monitoring times are chosen. We show that, under certain conditions, the same worst-case reward is achievable under either static or dynamic monitoring. This allows recovering the optimal dynamic monitoring policy by resolving static versions of the problem. We discuss cases when the static problem becomes tractable and highlight conditions when monitoring at equidistant times is optimal. Lastly, we showcase our framework in the context of a healthcare problem (monitoring heart-transplant patients for cardiac allograft vasculopathy), where we design optimal monitoring policies that substantially improve over the status quo recommendations. This paper was accepted by Chung Piaw Teo, optimization.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3