Artificial Intelligence: Can Seemingly Collusive Outcomes Be Avoided?

Author:

Abada Ibrahim12ORCID,Lambin Xavier3ORCID

Affiliation:

1. Grenoble Ecole de Management, 38000 Grenoble, France;

2. ENGIE Impact, 92400 Paris, France;

3. ESSEC Business School and THEMA, Cergy 95021, France

Abstract

Strategic decisions are increasingly delegated to algorithms. We extend previous results of the algorithmic collusion literature to the context of dynamic optimization with imperfect monitoring by analyzing a setting where a limited number of agents use simple and independent machine-learning algorithms to buy and sell a storable good. No specific instruction is given to them, only that their objective is to maximize profits based solely on past market prices and payoffs. With an original application to battery operations, we observe that the algorithms learn quickly to reach seemingly collusive decisions, despite the absence of any formal communication between them. Building on the findings of the existing literature on algorithmic collusion, we show that seeming collusion could originate in imperfect exploration rather than excessive algorithmic sophistication. We then show that a regulator may succeed in disciplining the market to produce socially desirable outcomes by enforcing decentralized learning or with adequate intervention during the learning process. This paper was accepted by Gabriel Weintraub, revenue management and market analytics. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2022.4623 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3