Bayesian Sequential Learning for Clinical Trials of Multiple Correlated Medical Interventions

Author:

Chick Stephen E.1ORCID,Gans Noah2ORCID,Yapar Özge3ORCID

Affiliation:

1. Technology & Operations Management Area, INSEAD, 77305 Fontainebleau, France;

2. Operations, Information and Decisions Department, The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania 19104;

3. Operations & Decision Technologies Department, Kelley School of Business, Indiana University, Bloomington, Indiana 47405

Abstract

We propose and analyze the first model for clinical trial design that integrates each of three important trends intending to improve the effectiveness of clinical trials that inform health-technology adoption decisions: adaptive design, which dynamically adjusts the sample size and allocation of interventions to different patients; multiarm trial design, which compares multiple interventions simultaneously; and value-based design, which focuses on cost-benefit improvements of health interventions over a current standard of care. Example applications are to seamless phase II/III dose-finding trials and to trials that test multiple combinations of therapies. Our objective is to maximize the expected population health-economic benefit of health-technology adoption decisions less clinical trial costs. We show that unifying the adaptive, multiarm, and value-based approaches to trial design can reduce the cost and duration of multiarm trials with efficient adaptive look ahead policies that focus on value to patients and account for correlated rewards across arms. Features that differentiate our approach from much other work on stochastic optimization include stopping times that balance sampling costs and the expected value of information of those samples, performance guarantees offered by new asymptotic convergence proofs, and the modeling of arms’ potentially different sampling costs. Our proposed solution can be computed feasibly and can randomize patients. The class of trials for the base model assumes that health-economic data are collected and observed quickly. Related work from Bayesian optimization can enable the further inclusion of trials with intermediate duration delays between the time of treatment initiation and observation of outcomes. This paper was accepted by Stefan Scholtes, healthcare management.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3