Boosting the Wisdom of Crowds Within a Single Judgment Problem: Weighted Averaging Based on Peer Predictions

Author:

Palley Asa B.1ORCID,Satopää Ville A.2ORCID

Affiliation:

1. Kelley School of Business, Indiana University, Bloomington, Indiana 47405;

2. Technology and Operations Management Department, INSEAD, 77305 Fontainebleau, France

Abstract

A combination of point estimates from multiple judges often provides a more accurate aggregate estimate than a point estimate from a single judge, a phenomenon called “the wisdom of crowds.” However, if the judges use shared information when forming their estimates, the simple average will end up overemphasizing this common component at the expense of the judges’ private information. A decision maker could in theory obtain a more accurate estimate by appropriately combining all information behind the judges’ opinions. Although this information underlies the judges’ individual estimates, it is typically unobservable and thus cannot be directly aggregated by a decision maker. In this article, we propose a weighting of judges’ individual estimates that appropriately combines their collective information within a single estimation problem. Judges are asked to provide both a point estimate of the quantity of interest and a prediction of the average estimate that will be given by all other judges. Predictions of others are then used as part of a criterion to determine weights that are applied to each judge’s estimate to form an aggregate estimate. Our weighting procedure is robust to noise in the judges’ responses and can be expressed in closed form. We use both simulation and data from a collection of experimental studies to illustrate that the weighting procedure outperforms existing methods. An R package called metaggR implements our method and is available on the Comprehensive R Archive Network. This paper was accepted by Manel Baucells, behavioral economics and decision analysis. Funding: This work was supported by the Indiana University Kelley School of Business and INSEAD. Supplemental Material: The data files and e-companion are available at https://doi.org/10.1287/mnsc.2022.4648 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3