Offline Pricing and Demand Learning with Censored Data

Author:

Bu Jinzhi1ORCID,Simchi-Levi David23ORCID,Wang Li3ORCID

Affiliation:

1. Department of Logistics and Maritime Studies, Faculty of Business, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong;

2. Department of Civil and Environmental Engineering, Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;

3. Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

We study a single product pricing problem with demand censoring in an offline data-driven setting. In this problem, a retailer has a finite amount of inventory and faces a random demand that is price sensitive in a linear fashion with unknown price sensitivity and base demand distribution. Any unsatisfied demand that exceeds the inventory level is lost and unobservable. We assume that the retailer has access to an offline data set consisting of triples of historical price, inventory level, and potentially censored sales quantity. The retailer’s objective is to use the offline data set to find an optimal price, maximizing his or her expected revenue with finite inventories. Because of demand censoring in the offline data, we show that the existence of near-optimal algorithms in a data-driven problem—which we call problem identifiability—is not always guaranteed. We develop a necessary and sufficient condition for problem identifiability by comparing the solutions to two distributionally robust optimization problems. We propose a novel data-driven algorithm that hedges against the distributional uncertainty arising from censored data, with provable finite-sample performance guarantees regardless of problem identifiability and offline data quality. Specifically, we prove that, for identifiable problems, the proposed algorithm is near-optimal and, for unidentifiable problems, its worst-case revenue loss approaches the best-achievable minimax revenue loss that any data-driven algorithm must incur. Numerical experiments demonstrate that our proposed algorithm is highly effective and significantly improves both the expected and worst-case revenues compared with three regression-based algorithms. This paper was accepted by J. George Shanthikumar, big data analytics. Funding: This work was supported by the MIT Data Science Laboratory. J. Bu was partially supported by a Hong Kong Polytechnic University Start-up Fund for New Recruits [Project ID P0039585]. Supplemental Material: Data and the online appendices are available at https://doi.org/10.1287/mnsc.2022.4382 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3