Ambiguous Dynamic Treatment Regimes: A Reinforcement Learning Approach

Author:

Saghafian Soroush1ORCID

Affiliation:

1. Harvard Kennedy School, Harvard University, Cambridge, Massachusetts 02138

Abstract

A main research goal in various studies is to use an observational data set and provide a new set of counterfactual guidelines that can yield causal improvements. Dynamic Treatment Regimes (DTRs) are widely studied to formalize this process and enable researchers to find guidelines that are both personalized and dynamic. However, available methods in finding optimal DTRs often rely on assumptions that are violated in real-world applications (e.g., medical decision making or public policy), especially when (a) the existence of unobserved confounders cannot be ignored, and (b) the unobserved confounders are time varying (e.g., affected by previous actions). When such assumptions are violated, one often faces ambiguity regarding the underlying causal model that is needed to be assumed to obtain an optimal DTR. This ambiguity is inevitable because the dynamics of unobserved confounders and their causal impact on the observed part of the data cannot be understood from the observed data. Motivated by a case study of finding superior treatment regimes for patients who underwent transplantation in our partner hospital (Mayo Clinic) and faced a medical condition known as new-onset diabetes after transplantation, we extend DTRs to a new class termed Ambiguous Dynamic Treatment Regimes (ADTRs), in which the causal impact of treatment regimes is evaluated based on a “cloud” of potential causal models. We then connect ADTRs to Ambiguous Partially Observable Markov Decision Processes (APOMDPs) proposed by Saghafian (2018) , and consider unobserved confounders as latent variables but with ambiguous dynamics and causal effects on observed variables. Using this connection, we develop two reinforcement learning methods termed Direct Augmented V-Learning (DAV-Learning) and Safe Augmented V-Learning (SAV-Learning), which enable using the observed data to effectively learn an optimal treatment regime. We establish theoretical results for these learning methods, including (weak) consistency and asymptotic normality. We further evaluate the performance of these learning methods both in our case study (using clinical data) and in simulation experiments (using synthetic data). We find promising results for our proposed approaches, showing that they perform well even compared with an imaginary oracle who knows both the true causal model (of the data-generating process) and the optimal regime under that model. Finally, we highlight that our approach enables a two-way personalization; obtained treatment regimes can be personalized based on both patients’ characteristics and physicians’ preferences.This paper was accepted by David Simchi-Levi, data science.Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2022.00883 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3