Nudging Drivers to Safety: Evidence from a Field Experiment

Author:

Choudhary Vivek1ORCID,Shunko Masha2ORCID,Netessine Serguei3ORCID,Koo Seongjoon4

Affiliation:

1. Information Technology & Operations Management, Nanyang Business School, Nanyang Technological University, Singapore 639798;

2. Information Systems & Operations Management, Foster School of Business, University of Washington, Seattle, Washington 98195;

3. Operations, Information and Decisions, The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania 19104;

4. J. D. Power, Westlake Village, California 91362

Abstract

Driving is an integral component of many operational systems, and any small improvement in driving quality can have a significant effect on accidents, traffic, pollution, and the economy in general. However, making improvements is challenging given the complexity and multidimensionality of driving as a task. In this paper, we investigate the effectiveness of nudging to improve driving performance. In particular, we leverage a smartphone application launched by our industry partners to send three types of nudges through notifications to drivers, indicating how they performed on the current trip with respect to their personal best, personal average, and latest driving performance. We measure the resulting driving performance using telematics technology (i.e., real-time sensor data from an accelerometer, Global Positioning System (GPS), and gyroscope in a mobile device). Compared with the “no-nudge” control group, we find that personal best and personal average nudges improve driving performance by approximately 18% standard deviations of the performance scores calculated by the application. In addition, these nudges improve interaccident times (by nearly 1.8 years) and driving performance consistency, as measured by the standard deviation of the performance score. Noting that driving abilities and feedback seeking may vary across individuals, we adopt a generalized random forest approach, which shows that high-performing drivers who are not frequent feedback seekers benefit the most from personal best nudges, whereas low-performing drivers who are also frequent feedback seekers benefit the most from the personal average nudges. Finally, we investigate the potential mechanism behind the results by conducting an online experiment in a nondriving context. The experiment shows that the performance improvements are directly driven by the changes in participants’ effort in response to different nudges and that our key findings are robust in alternative (nondriving) settings. Our analysis further shows that nudges are effective when the variability in reference points is low, which explains why the personal best and personal average nudges are effective, whereas the last score nudge is not. This paper was accepted by Vishal Gaur, operations management.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3