Minimax-Optimal Policy Learning Under Unobserved Confounding

Author:

Kallus Nathan1ORCID,Zhou Angela1ORCID

Affiliation:

1. Cornell University, New York, New York 10044

Abstract

We study the problem of learning personalized decision policies from observational data while accounting for possible unobserved confounding. Previous approaches, which assume unconfoundedness, that is, that no unobserved confounders affect both the treatment assignment as well as outcome, can lead to policies that introduce harm rather than benefit when some unobserved confounding is present as is generally the case with observational data. Instead, because policy value and regret may not be point-identifiable, we study a method that minimizes the worst-case estimated regret of a candidate policy against a baseline policy over an uncertainty set for propensity weights that controls the extent of unobserved confounding. We prove generalization guarantees that ensure our policy is safe when applied in practice and in fact obtains the best possible uniform control on the range of all possible population regrets that agree with the possible extent of confounding. We develop efficient algorithmic solutions to compute this minimax-optimal policy. Finally, we assess and compare our methods on synthetic and semisynthetic data. In particular, we consider a case study on personalizing hormone replacement therapy based on observational data, in which we validate our results on a randomized experiment. We demonstrate that hidden confounding can hinder existing policy-learning approaches and lead to unwarranted harm although our robust approach guarantees safety and focuses on well-evidenced improvement, a necessity for making personalized treatment policies learned from observational data reliable in practice. This paper was accepted by Hamid Nazerzadeh, big data analytics.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model-assisted sensitivity analysis for treatment effects under unmeasured confounding via regularized calibrated estimation;Journal of the Royal Statistical Society Series B: Statistical Methodology;2024-05-03

2. Doubly-Valid/Doubly-Sharp Sensitivity Analysis for Causal Inference with Unmeasured Confounding;Journal of the American Statistical Association;2024-04-24

3. Treatment Allocation with Strategic Agents;Management Science;2024-03-27

4. Optimal regimes for algorithm-assisted human decision-making;Biometrika;2024-03-19

5. Policy Learning with Asymmetric Counterfactual Utilities;Journal of the American Statistical Association;2024-02-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3